21 resultados para Visualization

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human T lymphotropic virus type 1 (HTLV-1) -associated myelopathy/tropic spastic paraparesis is a demyelinating inflammatory neurologic disease associated with HTLV-1 infection. HTLV-1 Tax11–19-specific cytotoxic T cells have been isolated from HLA-A2-positive patients. We have used a peptide-loaded soluble HLA-A2–Ig complex to directly visualize HTLV-1 Tax11–19-specific T cells from peripheral blood and cerebrospinal fluid without in vitro stimulation. Five of six HTLV-1-associated myelopathy/tropic spastic paraparesis patients carried a significant number (up to 13.87%) of CD8+ lymphocytes specific for the HTLV-1 Tax11–19 peptide in their peripheral blood, which were not found in healthy controls. Simultaneous comparison of peripheral blood and cerebrospinal fluid from one patient revealed 2.5-fold more Tax11–19-specific T cells in the cerebrospinal fluid (23.7% vs. 9.4% in peripheral blood lymphocyte). Tax11–19-specific T cells were seen consistently over a 9-yr time course in one patient as far as 19 yrs after the onset of clinical symptoms. Further analysis of HTLV-1 Tax11–19-specific CD8+ T lymphocytes in HAM/TSP patients showed different expression patterns of activation markers, intracellular TNF-α and γ-interferon depending on the severity of the disease. Thus, visualization of antigen-specific T cells demonstrates that HTLV-1 Tax11–19-specific CD8+ T cells are activated, persist during the chronic phase of the disease, and accumulate in cerebrospinal fluid, showing their pivotal role in the pathogenesis of this neurologic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The α9 acetylcholine receptor (α9 AChR) is specifically expressed in hair cells of the inner ear and is believed to be involved in synaptic transmission between efferent nerves and hair cells. Using a recently developed method, we modified a bacterial artificial chromosome containing the mouse α9 AChR gene with a reporter gene encoding green fluorescent protein (GFP) to generate transgenic mice. GFP expression in transgenic mice recapitulated the known temporal and spatial expression of α9 AChR. However, we observed previously unidentified dynamic changes in α9 AChR expression in cochlear and vestibular sensory epithelia during neonatal development. In the cochlea, inner hair cells persistently expressed high levels of α9 AChR in both the apical and middle turns, whereas both outer and inner hair cells displayed dynamic changes of α9 AChR expression in the basal turn. In the utricle, we observed high levels of α9 AChR expression in the striolar region during early neonatal development and high levels of α9 AChR in the extrastriolar region in adult mice. Further, simultaneous visualization of efferent innervation and α9 AChR expression showed that dynamic expression of α9 AChR in developing hair cells was independent of efferent contacts. We propose that α9 AChR expression in developing auditory and vestibular sensory epithelia correlates with maturation of hair cells and is hair-cell autonomous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

F- and V-type ATPases are central enzymes in energy metabolism that couple synthesis or hydrolysis of ATP to the translocation of H+ or Na+ across biological membranes. They consist of a soluble headpiece that contains the catalytic sites and an integral membrane-bound part that conducts the ion flow. Energy coupling is thought to occur through the physical rotation of a stalk that connects the two parts of the enzyme complex. This mechanism implies that a stator-like structure prevents the rotation of the headpiece relative to the membrane-bound part. Such a structure has not been observed to date. Here, we report the projected structure of the V-type Na+-ATPase of Clostridium fervidus as determined by electron microscopy. Besides the central stalk, a second stalk of 130 Å in length is observed that connects the headpiece and membrane-bound part in the periphery of the complex. This additional stalk is likely to be the stator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human estrogen receptor α (ER α) has been tagged at its amino terminus with the S65T variant of the green fluorescent protein (GFP), allowing subcellular trafficking and localization to be observed in living cells by fluorescence microscopy. The tagged receptor, GFP-ER, is functional as a ligand-dependent transcription factor, responds to both agonist and antagonist ligands, and can associate with the nuclear matrix. Its cellular localization was analyzed in four human breast cancer epithelial cell lines, two ER+ (MCF7 and T47D) and two ER− (MDA-MB-231 and MDA-MB-435A), under a variety of ligand conditions. In all cell lines, GFP-ER is observed only in the nucleus in the absence of ligand. Upon the addition of agonist or antagonist ligand, a dramatic redistribution of GFP-ER from a reticular to punctate pattern occurs within the nucleus. In addition, the full antagonist ICI 182780 alters the nucleocytoplasmic compartmentalization of the receptor and causes partial accumulation in the cytoplasm in a process requiring continued protein synthesis. GFP-ER localization varies between cells, despite being cultured and treated in a similar manner. Analysis of the nuclear fluorescence intensity for variation in its frequency distribution helped establish localization patterns characteristic of cell line and ligand. During the course of this study, localization of GFP-ER to the nucleolar region is observed for ER− but not ER+ human breast cancer epithelial cell lines. Finally, our work provides a visual description of the “unoccupied” and ligand-bound receptor and is discussed in the context of the role of ligand in modulating receptor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the ligand-induced endocytosis of the yeast α-factor receptor Ste2p by immuno-electron microscopy. We observed and quantitated time-dependent loss of Ste2p from the plasma membrane of cells exposed to α-factor. This ligand-induced internalization of Ste2p was blocked in the well-characterized endocytosis-deficient mutant sac6Δ. We provide evidence that implicates furrow-like invaginations of the plasma membrane as the site of receptor internalization. These invaginations are distinct from the finger-like plasma membrane invaginations within actin cortical patches. Consistent with this, we show that Ste2p is not located within the cortical actin patch before and during receptor-mediated endocytosis. In wild-type cells exposed to α-factor we also observed and quantitated a time-dependent accumulation of Ste2p in intracellular, membrane-bound compartments. These compartments have a characteristic electron density but variable shape and size and are often located adjacent to the vacuole. In immuno-electron microscopy experiments these compartments labeled with antibodies directed against the rab5 homologue Ypt51p (Vps21p), the resident vacuolar protease carboxypeptidase Y, and the vacuolar H+-ATPase Vph1p. Using a new double-labeling technique we have colocalized antibodies against Ste2p and carboxypeptidase Y to this compartment, thereby identifying these compartments as prevacuolar late endosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether the cell nucleus is organized by an underlying architecture analagous to the cytoskeleton has been a highly contentious issue since the original isolation of a nuclease and salt-resistant nuclear matrix. Despite electron microscopy studies that show that a nuclear architecture can be visualized after fractionation, the necessity to elute chromatin to visualize this structure has hindered general acceptance of a karyoskeleton. Using an analytical electron microscopy method capable of quantitative elemental analysis, electron spectroscopic imaging, we show that the majority of the fine structure within interchromatin regions of the cell nucleus in fixed whole cells is not nucleoprotein. Rather, this fine structure is compositionally similar to known protein-based cellular structures of the cytoplasm. This study is the first demonstration of a protein network in unfractionated and uninfected cells and provides a method for the ultrastructural characterization of the interaction of this protein architecture with chromatin and ribonucleoprotein elements of the cell nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During protein synthesis, elongation factor G (EF-G) binds to the ribosome and promotes the step of translocation, a process in which tRNA moves from the A to the P site of the ribosome and the mRNA is advanced by one codon. By using three-dimensional cryo-electron microscopy, we have visualized EF-G in a ribosome–EF-G–GDP–fusidic acid complex. Fitting the crystal structure of EF-G–GDP into the cryo density map reveals a large conformational change mainly associated with domain IV, the domain that mimics the shape of the anticodon arm of the tRNA in the structurally homologous ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. The tip portion of this domain is found in a position that overlaps the anticodon arm of the A-site tRNA, whose position in the ribosome is known from a study of the pretranslocational complex, implying that EF-G displaces the A-site tRNA to the P site by physical interaction with the anticodon arm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water-selective pathway through the aquaporin-1 membrane channel has been visualized by fitting an atomic model to a 3.7-Å resolution three-dimensional density map. This map was determined by analyzing images and electron diffraction patterns of lipid-reconstituted two-dimensional crystals of aquaporin-1 preserved in vitrified buffer in the absence of any additive. The aqueous pathway is characterized by a size-selective pore that is ≈4.0 ± 0.5Å in diameter, spans a length of ≈18Å, and bends by ≈25° as it traverses the bilayer. This narrow pore is connected by wide, funnel-shaped openings at the extracellular and cytoplasmic faces. The size-selective pore is outlined mostly by hydrophobic residues, resulting in a relatively inert pathway conducive to diffusion-limited water flow. The apex of the curved pore is close to the locations of the in-plane pseudo-2-fold symmetry axis that relates the N- and C-terminal halves and the conserved, functionally important N76 and N192 residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular water concentrations in single living cells were visualized by nonlinear coherent anti-Stokes Raman scattering (CARS) microscopy. In combination with isotopic exchange measurements, CARS microscopy allowed the real-time observation of transient intracellular hydrodynamics at a high spatial resolution. Studies of the hydrodynamics in the microorganism Dictyostelium discoideum indicated the presence of a microscopic region near the plasma membrane where the mobility of water molecules is severely restricted. Modeling the transient hydrodynamics eventuated in the determination of cell-specific cytosolic diffusion and plasma membrane permeability constants. Our experiments demonstrate that CARS microscopy offers an invaluable tool for probing single-cell water dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel protein superfamily with over 600 members was discovered by iterative profile searches and analyzed with powerful bioinformatics and information visualization methods. Evidence exists that these proteins generate a radical species by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. The superfamily (named here Radical SAM) provides evidence that radical-based catalysis is important in a number of previously well- studied but unresolved biochemical pathways and reflects an ancient conserved mechanistic approach to difficult chemistries. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerization, sulfur insertion, ring formation, anaerobic oxidation and protein radical formation. They function in DNA precursor, vitamin, cofactor, antibiotic and herbicide biosynthesis and in biodegradation pathways. One eukaryotic member is interferon-inducible and is considered a candidate drug target for osteoporosis; another is observed to bind the neuronal Cdk5 activator protein. Five defining members not previously recognized as homologs are lysine 2,3-aminomutase, biotin synthase, lipoic acid synthase and the activating enzymes for pyruvate formate-lyase and anaerobic ribonucleotide reductase. Two functional predictions for unknown proteins are made based on integrating other data types such as motif, domain, operon and biochemical pathway into an organized view of similarity relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end of the year 2000. The sequencing effort has been coordinated by an international collaboration, the Arabidopsis Genome Initiative (AGI). The rationale for intensive investigation of Arabidopsis is that it is an excellent model for higher plants. In order to maximize use of the knowledge gained about this plant, there is a need for a comprehensive database and information retrieval and analysis system that will provide user-friendly access to Arabidopsis information. This paper describes the initial steps we have taken toward realizing these goals in a project called The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolling circle amplification (RCA) is a surface-anchored DNA replication reaction that can be exploited to visualize single molecular recognition events. Here we report the use of RCA to visualize target DNA sequences as small as 50 nts in peripheral blood lymphocytes or in stretched DNA fibers. Three unique target sequences within the cystic fibrosis transmembrane conductance regulator gene could be detected simultaneously in interphase nuclei, and could be ordered in a linear map in stretched DNA. Allele-discriminating oligonucleotide probes in conjunction with RCA also were used to discriminate wild-type and mutant alleles in the cystic fibrosis transmembrane conductance regulator, p53, BRCA-1, and Gorlin syndrome genes in the nuclei of cultured cells or in DNA fibers. These observations demonstrate that signal amplification by RCA can be coupled to nucleic acid hybridization and multicolor fluorescence imaging to detect single nucleotide changes in DNA within a cytological context or in single DNA molecules. This provides a means for direct physical haplotyping and the analysis of somatic mutations on a cell-by-cell basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During skeletal muscle differentiation, the Golgi complex (GC) undergoes a dramatic reorganization. We have now visualized the differentiation and fusion of living myoblasts of the mouse muscle cell line C2, permanently expressing a mannosidase-green fluorescent protein (GFP) construct. These experiments reveal that the reorganization of the GC is progressive (1–2 h) and is completed before the cells start fusing. Fluorescence recovery after photobleaching (FRAP), immunofluorescence, and immunogold electron microscopy demonstrate that the GC is fragmented into elements localized near the endoplasmic reticulum (ER) exit sites. FRAP analysis and the ER relocation of endogenous GC proteins by phospholipase A2 inhibitors demonstrate that Golgi-ER cycling of resident GC proteins takes place in both myoblasts and myotubes. All results support a model in which the GC reorganization in muscle reflects changes in the Golgi-ER cycling. The mechanism is similar to that leading to the dispersal of the GC caused, in all mammalian cells, by microtubule-disrupting drugs. We propose that the trigger for the dispersal results, in muscle, from combined changes in microtubule nucleation and ER exit site localization, which place the ER exit sites near microtubule minus ends. Thus, changes in GC organization that initially appear specific to muscle cells, in fact use pathways common to all mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Escherichia coli protein DbpA is unique in its subclass of DEAD box RNA helicases, because it possesses ATPase-specific activity toward the peptidyl transferase center in 23S rRNA. Although its remarkable ATPase activity had been well defined toward various substrates, its RNA helicase activity remained to be characterized. Herein, we show by using biochemical assays and atomic force microscopy that DbpA exhibits ATP-stimulated unwinding activity of RNA duplex regardless of its primary sequence. This work presents an attempt to investigate the action of DEAD box proteins by a single-molecule visualization methodology. Our atomic force microscopy images enabled us to observe directly the unwinding reaction of a DEAD box helicase on long stretches of double-stranded RNA. Specifically, we could differentiate between the binding of DbpA to RNA in the absence of ATP and the formation of a Y-shaped intermediate after its progression through double-stranded RNA in the presence of ATP. Recent studies have questioned the designation of DbpA, in particular, and DEAD box proteins in general as RNA helicases. However, accumulated evidence and the results reported herein suggest that these proteins are indeed helicases that resemble in many aspects the DNA helicases.